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We show that a simple evolutionary scheme, when applied to the minority game(MG), changes the phase
structure of the game. In this scheme each agent evolves individually whenever his wealth reaches the specified
bankruptcy level, in contrast to the evolutionary schemes used in the previous works. We show that evolution
greatly suppresses herding behavior, and it leads to better overall performance of the agents. Similar to the
standard nonevolutionary MG, the dependence of the standard deviations on the number of agentsN and the
memory lengthm can be characterized by a universal curve. We suggest a crowd-anticrowd theory for under-
standing the effect of evolution in the MG.
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I. INTRODUCTION

Complex adaptive systems consist of agents using adap-
tive strategies to compete for limited resources. As changes
in the global environment are induced by the agents them-
selves, it is important to study dynamics of such systems.
The minority game(MG), proposed by Challet and Zhang
[1], is a prototypical agent-based model that can be analyzed
using the tools of statistical mechanics. The game captures
some essential features of complex adaptive systems in
which agents with limited information and rationality com-
pete for limited resources. A key question in the study of
agent-based models is how evolution changes the behaviors
of the agents.

There have been a few studies on the effect of evolution
in the minority game. In the context of a simple evolutionary
minority game, Johnsonet al. found that the agents self-
segregate into two opposing extreme groups[3] when the
payoff structure is symmetric(i.e., the penalty for losing is
equal to the reward for winning). Hod and Nakar generalized
this to an asymmetric payoff structure, where the penalty for
losing is greater than the reward for winning, and found the
emergence of clustering of cautious agents[4]. Chenet al.
[5,6] derived a general formalism to understand the dynami-
cal mechanism for the transition from segregation to cluster-
ing. They found that the effective rate of evolution plays an
important role in determining the resulting steady-state popu-
lation distribution. These studies have focused mainly on
population distribution. Liet al. [7], on the other hand, stud-
ied how evolution can help to improve the overall perfor-
mance of the agents in the original MG. Starting from the
adaptive MG proposed by Challet and Zhang[1], Li et al.
introduced an evolutionary scheme in which all poorly per-
forming agents evolve synchronously at everyt=10 000
steps. Agents are ranked by their gains, and those ranked at
the bottomp percent( p=10%, 20%, 30%, 40%, etc.) are
forced to change their strategies at these prespecified steps.
In order to make the evolution process smooth, not all the
agents ranked at the bottom will change their strategies, but
only 50% of those(chosen randomly) have to do so. Those
who are chosen to evolve replace the current strategies with
new randomly picked ones. They reported that with evolu-
tion the performance is significantly better; but the phase

structure, characterized by the so-called Savit curve[8], re-
mains similar to that of the original nonevolutionary MG. A
later study[9] based on a variant of the evolutionary scheme
used in Ref.[7] led to a similar conclusion, but with better
overall performance of the agents.

When dealing with models of heterogeneous agent popu-
lation, it makes sense to use an evolutionary scheme in
which agents evolve individually, instead of synchronously
at specified times. In this paper we adopt the simple scheme
used in the evolutionary minority game[3], in which an
agent becomes bankrupted and is replaced whenever its ac-
cumulated wealth is below a given threshold. With this
simple scheme we found that herding behavior has disap-
peared when the memory lengthsmd is small, and the Savit
curve obtained is significantly different from that of the
original MG.

II. NUMERICAL RESULTS

Let us first briefly describe the minority game model. The
game concerns a population ofN (odd number) heteroge-
neous agents with limited capabilities, who repeatedly com-
pete to be in the minority group. After each round the win-
ners gain a point and the losers lose a point. Each agent holds
S strategies. Each strategy is a look-up table listing the strat-
egy’s prediction of the minority group given the record of the
most recentm minority groups. There are total 22m

number of
possible strategies, so the larger the value ofm, the greater
the processing power of the agents. Virtual points are accu-
mulated for each of the strategies the agent has, and he uses
the most successful strategy available to him. To include the
effect of evolution we assign wealthw to each agent;w will
increase or decrease by one when the agent wins or loses.
The agent will be replaced if his wealth is below a threshold
−d sd.0d; the new agent chooses hisS strategies randomly
and his wealth is initialized to zero. The distribution of strat-
egies gradually evolves as the game goes on.

We have done extensive simulations withN
=51,101,201,401; m=1,2, . . . ,10; S=1,2; and d
=4,16,64,256,1024,4096. The number of time steps used
is set to beT0=800 00032m/2+10 000d; we have checked
that this choice of the time step is sufficient for obtaining
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steady-state properties of the model. In our simulations we
monitor s, which is the standard deviation of the number of
agents belonging to one of the groups. The smaller the value
of s, the larger a typical minority group and the better the
overall performance of the agents will be. The smallest value
of s is s=0.5, which means that the difference between the
numbers in the minority and majority groups is one. The
overall performance of the agents is at the optimal whens
=0.5. At the other extreme, when the agents make their
choices randomly as in the random choice game(RCG), we
haves2/N=0.25. In almost all our simulations, particularly
for small m, evolution reducess significantly. This is illus-
trated in Fig. 1, which showss2/N vs 2m/N for the MG with
and without evolution. The results are based on averages
over eight independent runs, which are enough for obtaining
accurate averages for the evolutionary MG, as the differ-
ences among different runs are quite small. For smallm evo-
lution leads to a dramatic reduction ins as herding behavior
of the agents is greatly suppressed. The results for different
N fall to a universal curve. For largem the game still ap-
proaches the limit corresponding to the random choice game
and the effect of evolution is small.

We have also studied the model with the award-to-fine
ratio (as defined in Ref.[4]) RÞ1. In this case the winners
getR points while the losers lose a point. We found that, for
eachN, there is an optimal value ofR=RcsNd.1 that gives
rise to the smallest value ofs. For R.RcsNd the average
wealth is ever increasing and there is no steady state. Figure
2 showss2/N vs 2m/N for R.1 as compared to the case
R=1. It is clear from the figure thats can be further reduced
whenR.1. We also found that, form=1 or 2, the optimal
value ofs=0.5 can in fact be achieved.

III. A CROWD-ANTICROWD THEORY FOR THE
EVOLUTIONARY MG

We now consider a crowd-anticrowd theory[10] to under-
stand the effect of evolution in the minority game. Our dis-
cussion below follows Ref.[10]. For simplicity we only con-

sider S=1 and use a reduced strategy space(RSS).
Numerically the differences between the cases withS=1 and
S=2 are small. RSS is a subset of strategies, which span the
full strategy space(FSS). Consider, for example, an RSS for
m=2, consisting of the following eight strategies:

U ; h− 1 − 1 − 1 − 1j,h+ 1 + 1 − 1 − 1j,

h+ 1 − 1 + 1 − 1j,h− 1 + 1 + 1 − 1j, s1d

Ū ; h+ 1 + 1 + 1 + 1j,h− 1 − 1 + 1 + 1j,

h− 1 + 1 − 1 + 1j,h+ 1 − 1 − 1 + 1j. s2d

Here ±1 indicate the prediction of a strategy given one of the

four possible histories. Any two strategies inhU ,Ūj are ei-
ther uncorrelated(with the Hamming distance 2m/2) or anti-
correlated(with the largest Hamming distance 2m). For a
givenm there are a total of 2PsP=2md strategies withP pairs
of anticorrelated strategies(other pairs are uncorrelated) in
RSS. For each strategyG in RSS there is a corresponding

anticorrelated strategyḠ. It is believed that the essential fea-
tures of the game are kept when RSS is used instead of the
FSS[2].

Let us evaluates2=kfn+std−N/2g2lt=kfn+std−n−stdg2l /4,
where n+ and n− are the numbers of agents making the
choices +1 and −1, respectively. The average is over time
stept. In RSS

n+std − n−std = o
G=1

2P

aG
mstdnG,

wheremstd denotes the current history,aG
mstd= ±1 is the re-

sponse of strategyG to the history bit-stringmstd, andnG is
the number of agents using strategyG at time t. We have

FIG. 1. s2/N vs 2m/N for the MG with and without evolution.
d=256 is used for the evolutionary MG. The results are obtained by
averaging over eight independent runs.

FIG. 2. s2/N vs 2m/N for the evolutionary MG.d=64 is used.
The results are obtained by averaging over eight independent runs.
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s2 =
1

4 o
G=1,G8=1

2P

kaG
mstdnGaG8

mstdnG8lt. s3d

In our simulation we found that the system visits all possible
histories equally. This is illustrated in Fig. 3, which shows a
histogram of the number of visits for each m-bit history. In
order to compare with the nonevolutionary MG, we useS
=2 in the figure; the result forS=1 is essentially the same.
As we can see from the figure, the system does not visit all
possible histories equally in the nonevolutionary MG.

For the evolutionary MG we can thus replace an average
over time by an average over all possible histories. Now the
double sum can be broken down into three parts, based on
the correlation between the strategies. GivenkaGaGlt=1,
kaGaḠlt=−1, and kaGaG8lt<kaGaG8lh=0 (for G8ÞG and

G8ÞḠ), wherek¯lh indicates average over all possible his-
tories, we can write the double sum as

s2 =
1

4Fo
G=1

2P

knG
2 lt − o

G=1

2P

knGnḠltG s4d

=
1

4 o
G=1

P

fknG
2 lt − 2knGnḠlt + kn

Ḡ

2 ltg s5d

=
1

4 o
G=1

P

ksnG − nḠd2lt. s6d

In the above derivation we have tacitly assumed thathnGj
change very slowly so the averages overhaGj can be done
while holdinghnGj constant. This is in the spirit of adiabatic

approximation; it is valid because the evolution rate is low
(as long asd is not too small).

Let nP be the number of pairs of agents holding anticor-
related strategies andnS be the number of agents holding
unpaired strategies. Only the agents holding unpaired strate-
gies contribute tos; the game behaves essentially as an RCG
with nS number of agents. Thus we haves2=0.25nS, or

s2/N = 0.25s, s7d

wheres=nS/N. Note that 2nP+nS=N, nP can be written as
nP=Ns1−sd /2. To determines we need to consider the evo-
lutionary dynamics of the game. At the steady state we have
the following balance equation:

2rPnPf1 − psm,Ndg = rSnSpsm,Nd, s8d

whererP andrS are the bankruptcy rate for the paired agents
(pair breaking rate) and the bankruptcy rate for the unpaired
agents, respectively;psm,Nd is the probability that a new
pair is formed when a bankrupted agent is replaced. One can
estimatepsm,Nd as

psm,Nd = 1 − s1 − 1/2PdnS < 1 − exps− 0.5Ns/2md. s9d

It is somewhat difficult to estimaterP andrS. It can be argued
thatrP/ rS does not sensitively depend onm andN. The equa-
tion for s is then

rP

rS
s1 − sd = s

pss/zd
1 − pss/zd

, s10d

wherez=2m/N. The solutions is a function ofz. Thus when
we plot s2/N vs z=2m/N, the curves fall to a universal
curve. Sincepsxd is a monotonically decreasing function of
x, the universal curvesszd obtained from the above equation
will be a monotonically increasing function ofz. In the limit
z→` we have pss/zd→0; this leads tos→1 or s2/N
=0.25. Thusz→` is the RCG limit. ForR.1, rP/ rS de-
creases; this leads to smaller values fors ands. All of these
are in agreement with the simulation results. Thus the crowd-
anticrowd picture provides a qualitative understanding of the
evolutionary MG.

In conclusion, we have shown that, when a simple evolu-
tionary scheme is applied to a heterogeneous population of
agents, herding behavior in the MG is greatly suppressed.
The dependence of the standard deviations on the number
of agentsN and the memory lengthm can be characterized
by a universal curve. In addition, we demonstrated that a
crowd-anticrowd theory can be used to understand qualita-
tively the effect of evolution in the MG.
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FIG. 3. Histogram for the number of appearances of all possible
histories.N=101,S=2, m=6, andd=256. For comparison the cor-
responding histogram for the nonevolutionary MG is also plotted.
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